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Abstract: Multi-agent deep reinforcement learning (MADRL) has attracted a tremendous amount of interest in recent years. In
this paper, we introduce MADRL into the confrontation scene of Unmanned Aerial Vehicle (DAV) swarm . To analysis the
dynamic game process ofUAV swarm confrontation, we build two non-cooperative game models based on MADRL paradigm.
By using the multi-agent deep deterministic policy gradient (MADDPG) and the centralized training with decentralized
execution method, we achieve the Nash equilibrium under 5 vs. 5 UAV confrontation scenes. We also introduce multi-agent soft
actor critic (MASAC) method into the UAV swarm confrontation, simulation results indicate that the MASAC-based model
outperforms the :MADDPG-based model on exploring the UAV swarm combat environment, and more effectively converges to
the Nash equilibrium. Our work "Will provide new insights into the confrontation ofUAV swarm.
Key Words: UAV Swann, Non-cooperative Game, Multi-agent, Deep Reinforcement Learning

1 Introduction

Unmanned Aerial Vehicles (UAVs) have been widely
used in civil and military fields, including environmental
monitoring, power inspection, disaster relief,
counter-terrorism, etc. Autonomous decision-making of
UAVs is a key problem for in-depth application in these
fields, especially in the field ofUAV swarm dynamic garner".
The complexity ofthe execution of tasks and the uncertainty
of the environment require VAVs are of high
decision-making capabilities and autonomy. In recent years,
Deep reinforcement learning (DRL) has achieved
outstanding achievements in the field of autonomous
decision-making, resulting in a dramatic increase in many
inspiring applications. Recent works have explored beyond
the single-agent scenarios and some multi-agent learning
(MAL) methods have been proposedl"l. A multi-agent
system can be denoted as a group ofautonomous, interacting
entities sharing a common dynamic environment, in which
entities perceive with sensors, act with actuators and learn
coordinated and confrontation strategies!",

Multi-agent deep reinforcement learning (MADRL) is a
powerful leaming paradigm which incorporates MAL with
DRL. Chen et al. presented a multi-agent collision avoidance
algorithm based on deep reinforcement learning which
includes a value network to encode joint configuration with
neighborsl'"l. It is known that continuous control of
multi-agents is an important issue in complex dynamic
environment. To deal with such continuous control problem,
Lillicrap et al. proposed a deep deterministic policy gradient

~This work is supported by the National Key R&D Program of China
(Grant No. 2018AAAOlO0804), the Beijing Education Commission
Science and Teclmology Project (KM201811 4 17005, KM2019114170 10),
the Zhejiang Key laboratory of General Aviation Operation technology(lD
GA2020-7).

(DDPG) algorithm based on actor-critic (AC) architecturel ' "I
and deep reinforcement leamingl '"! Lowe et al. put forward
an multi-agent actor-critic framework with respect to mixed
cooperative-competitive environmentl", where action
policies of other agents are considered and agents can
successfully learn policies that require complex
coordination.

To deal with the non-cooperative game with respect to the
VAV swarm confrontation, the game can be transformed into
a Markov Decision Process (MDP)l81. Considering that the
model cannot be trained directly in the actual UAV's fight,
interactive virtual simulation environment is widely used to
train the model. In the VAV swarm confrontation game, each
VAV performs tasks independently and maximizes its own
interests, meanwhile maximizes the benefits of its entire
swarm. The independence and autonomy of single UAV
need be taken into account, and the autonomous
decision-making between VAV swarms should also be
considered. There are two major difficulties in the scene of
UAV swarm confrontation: (I) incomplete observation of
single UAV, namely each UAV cannot fully perceive the
information of the environment; (2) the trade-off between
exploration and utilization.

Most previous works use computer games to study the
multi-agent cooperative-competitive game. In this paper, we
introduce MADDPG and MASAC algorithms into the
confrontation scenes of VAV swarm, and construct the
MADDPG-based and the MASAC-based UAV swarm
confrontation models, respectively. The result implies that
UAV swarm under MASAC can more effectively explore the
combat environment and converge to the Nash equilibrium
than that ofMADDPG.
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3.1 The UAV Kinematic Model 
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where r¢ denotes the roll angular velocity; r", is the heading

angular velocity; ¢ represents the roll angle; If! is the
heading angle; F is the driving force; Ax, Ay are the drag

acceleration; vx,vy,vz are the UAV's speed; x,y,z are the

spatial position. The constraints of the angles can be defined
as

2 Methodology

2.1 The partially observable Markov game

We consider a multi-agent extension of the Markov
decision process (MDP) called the partially observable
Markov game. A Markov game with N agents can be
defined by a set of states S describing the possible
configurations of all agents, a set of actions Ai' ... , AN and a

set of observations 01' ... ,ON . To choose an action, agent i

uses a stochastic policy 1[0, OJ x At H [0,1] , which

produces the next state according to the state transition
function P : S x Al X ... x A N H S . Agent i obtains a reward

r, S x At H 1R and receives a private observation OJ
S H OJ. The initial states are determined by the distribution
p : S H [0,1] . The objective of agent i is to maximize the

T
expected reward R . = L rt / , where r is a discount

I t = 0 I

factor and T is the time horizon. Since the general reward is
often sparse in the VAV swarm confrontation environment,
it is necessary to design a reasonable reward mechanism for
efficient training and fast convergence!".

= ¢+ r¢dt,-30 < ¢ < 30

r, ~ (9.81· m I (F· dl)) .tan e
cp = cp + r",dt,-180 < cp < 180

F x = Fsincp

F y = F ccs sp

-. =(Fxlm-Ax)·dt

v y = (Fy Im -Ay)·dt

(2)

2.2 Policy Gradient

Policy gradient (pG) is another popular choice for a
variety of reinforcement learning (RL) tasks. The main idea
is to adjust the policy parameter (J directly for maximizing
the objective J(B) ~ E _ • _ [RJ by taking steps in the

S P ,a tEe

direction of V eJ (B) . The policy gradient can be written as [31

where pff is the state distribution. The policy gradient idea
has given insights to several practical algorithms. For

example, a sample reward R 1
= L T yi Ilj [5], an

i = t

approximation of the true action-value function QtE(s, a) [4].

However, policy gradient methods often exhibit high
variance, especially in the multi-agent learning process.
Since in this scene the reward of agent usually depends on
the actions of other agents. When the actions of other agents
are not considered in the agent's learning process, the
variance of gradients will emerge.

3 The Model

3.1 TheUAVKinematicModel

In the UAV swarm confrontation environment, we
simplify the UAV motion as a two-dimensional motion with
fixed fly height, and the UAV kinematic model can be
denoted as

(3)

where the maximum roll angle is 30° and the maximum
heading angle is J80°.

Next, we establish the confrontation rules. The
confrontation procedure is divided into three stages: the
exploration and discovery, the locking and tracking and the
attacking. The exploration and discovery is to scout the
enemy UAVs by using radar. The scope of radar scanning
and reconnaissance is denoted as a circular area where the
UAV is the center ofthe circle. The locking and tracking is to
lock the target and communicate the acquired information
with the neighbors. As long as the UAV appears within the
range ofthe signal detection, it can receive information from
its friend neighbors. The communication range is the circular
area denoted by d, where the UAV is the center ofthe circle.
According to the target position provided by communication
or reconnaissance, UAV can release interference signal. The
interference signal range is a circular area where the
interference source is the center and the radius is di n . The
interference can make opponents ' distance calculation
wrong. In the attacking stage, a target is selected, and the
missile path is planned to hit the target. Every UAV has a
dominant area, namely the attacking area, which is
represented by the radius d" and the angle e" .On the other
hand, every UAV owns a vulnerable area, namely the
defending area, which is denoted by the angle ed, and the

radius d d' (Figure J).
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In the multi-agent confrontation game, if each agent learns
the environment independently, it will lead to the
non-stationary of the learning process and cannot effectively
converge to the Nash equilibrium (NE). Each agent's policy
changes as the training goes on, and the environment
becomes unstable from the perspective ofeach agent, namely,
the changes cannot be well adapted by each agent's own
policy. On the other hand, if all agents are combined into a
single large agent, then an exponential explosion of action
space dimension will take place.

3.2 The MADDPG-based
Confrontation Model

DAV Swarm

Fig. 1: The schematic diagram of the confrontation ranges

The Euclidean distance between UAV i and UAV i is
represented as

dU ~ lip; - Pill ,

~~(P;-Pi)H(p;-Pi) (4)

I 2 2 2=,,(Xj-X) +(Yj-Yj) +(Z j-Zj)

where Pj is the position ofUAV i ,and P j is the position of

UAVi. Figure 2 displays the schematic diagram of the
confrontation situation of two UAVs.

Fig. 2: The schematic diagram of the confrontation situation of
twoUAVs

The attacking angle e;. and the defending angle Bd. are
calculated as

Centralized training decentralized execution (CTDE) is an
useful reinforcement learning paradigm. During the training
process of the actor-critic framework , an overall evaluation
is made by inputting additional global information to the
Critic. During the testing process, however, the Critic is not
used anymore, only the Actor is used to interact with the
environment and make decisions. Consequently, CTDE can
effectively avoid non-stationary of the multi-agent
environment and the non-convergence ofMARL algorithms.
By using the mechanism of CTDE, agents can make correct
decisions even though only locally observed states are used.

In the algorithm of the multi-agent deep deterministic
policy gradient (MADDPG), two networks: the Actor
network and the Critic network, will be constructed. The
Actor network mainly interacts with the environment for
decision-making and execution. While the Critic network
estimates the value function according to the global state of
the environment and the joint action of agents. Since the
output of the Critic network is used for gradient update, the
Actor can make more effective decisions.

In order to get independent leaming ability, each agent
O\VllS two independent Actor and Critic networks. The Actor
network obtains the decision action a j = J; (OJ) based on the

observation state OJ , which can be defined as nt (a j IOJ),

while the Critic network achieves the state-action value from
the global observation state and the joint action
Qj = f;(o,a). The network is denoted aSQt(o,a) , where
the multi-layer perceptron (MLP) is used. The framework of
MADDPG is plotted in Figrue 3.

The objective function of the Actor network is
J,' (e,) ~ E., _D[R (o,a)] , and its gradient is defined as

4998

The objective function of the Critic network is

Y -r + rQ'(o ' a') I -
j - I I ' a '=n," (a, '0,')

(6)

(7)
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4 Simulation Results and Discussion 
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3.3 The MASAC-based
Confrontation Model

DAV Swarm other agents. The divergence of the two distributions is
calculated as

Here, the objective function of the Actor is
J i" (8,) = Eo, - 0 [Ri( o , a) + aH (tr: CI 0i»]' and its gradient is

where a is the temperature coefficient of the entropy.

Although MADDPG can solve the convergence problem
when incomplete information exists in the environment, but
it also leads to the sensitivity of hyperparameter, poor
stability. And the action output of MADDPG only adds
Gaussian distribution noise for exploration, thus the
exploration ability of deterministic strategy is relatively
poor'?', The single agent soft actor-critic (SAC)[9J is an
effective off-policy stochastic policy algorithm, in which the
expected reward is the combination of the reward and the
policy entropy that measures the uncertainty of policy
distribution. On the other hand, by minimizing the
divergence between the policy distribution and the Q-value
distribution, the agent's policy distribution can approach to
the Q-value distribution.

tr i ' = arg min D KL

J[i Err

1 soft
exp(-)Q i (0,,')

a
triCI°it)11 ft' Z;o (Ot)

(8)

Here, we build an DAV swarm confrontation model with
the multi-agent soft actor-critic (MASAC) framework,
where the policy entropy is used. By adopting centralized
training, the non-stationarity of the environment can be
quickly reduced in the early training stage, and the
environment can be stabilized and will converge quickly in
the later stage. When two confrontation players are not
equally rational, MASAC can find better strategies than the
NE. During the testing stage, based on the partial
observation information, the learning can approach to the
NE.

1o)

1&5
1 DAV!

-

Actor-target network ~!l o,a

Critic network I.-~

Uj
QiCo,a) " 0'

Critic target network I

"'

r1,°'t <q,at,r1,°'t >- ~ . I

~I

Replay buffer f---

I DAV swarm i a~[a"a" ..·,aN ]
environment •

•
•

ON

~ r
UAVN

'-
Actor-target network I

o,a
Critic network

Critic-target network I

<oN,aN,rN,o'N> DN.I
Replay buffer ~ >---

' I

Fig. 3: The framework of the MADDPG-based DAV swarm
confrontation

MASAC maximizes both the expected reward and the
policy entropy. Since the policy distribution is close to the
global Q value distribution, the policy not only considers the
agent's state, but also takes into account the behavior of

'~ I+ V' 0/0, (&i;Oi)('1a,Qi (o,a) a,~f,y,;o,) -a'1 e, logff(u i 10i»]

Two Critic networks are constructed to calculate two Q
values, and the smallest Q value is passed to the Actor
network to reduce the variance of the policy network. The
objective function of the Critic is

J i
Qj

(rpj) = Eo,a,r,o'- D[(Q; j (o,a) - y i )2]

Yi rr, + r (\2f (0 t a') - a log tr (a ', 1 «, '»)
a, (a, '10, ')

forj =1,2

scenario-l scenario-2 scenario-3 scenario-4

~... ...
~, ,.~ 6 .. -4
~ ..

~

'" ~

"" "'.
scenario-5 scenario-6 scenario-7 scenario-8

~ a ) a~ "~ ...
~ ~a

Fig. 4: The confrontation process with respect to 5 red DAVs vs. 5
blueDAVs

4 Simulation Results and Discussion

To verify the DAV swarm confrontation model based on
MADRL, we construct a 5 vs. 5 adversarial environment, in
which 5 red DAVs combat with 5 blue DAVs and DAVs in
the same team can communicate freely. As shown in Figure 4,
the confrontation process is divided into 8 scenarios, where
DAVs take actions according to MADDPG algorithm.
Scenario-l shows the initial positions (randomly generated)
ofall red and blue DAVs. In scenario-2 and 3, DAVs explore
the battlefield to obtain the confrontation situation of both
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sides. From scenario-4 to scenario-7, each VAV executes its
strategy to win the battle. The final situation of the
confrontation is displayed in scenario-S. The
hyperparameters of the MADDPG-based model are shown
in Table 1, where the max step refers to the maximum
number of the confrontation steps.

-- blue win
-- draw
-- red win
- 0 - mean blue win
- .. ~ mean draw
- 0 - mean red win

,
episode k

--~"'u ,

""";-~,~-,~-;-~-;-~,~-~

becomes more and more stable, which means that in the later
stage of the training both red and blue UAVs get their own
optimal responses, reflecting that the Nash equilibrium ofthe
game is obtained. On the other hand, in the middle stage of
the training, the blue team noticed that the red team has
learned a good strategy to improve the win rate, and the blue
team will learn a countermeasure strategy accordingly. And
thus the win rate of the red team is inhibited in the
subsequent training stages.

Fig. 6: The win rate as a function of the episode with respect to red
and blue DAVs under the MADDPG-based Model

Red and Blue DAYs

Next, we investigate the effect ofthe MASAC-based UAV
swarm confrontation model. Figure 7 shows the relationship
between the mean reward and the episode, where red and
blue UAV s all use MASAC algorithm. Here, the mean
reward is also the average value of the total reward of two
UAV teams. It displays that the mean reward value is close
to convergence in the initial stage of the training, indicating
that UAVs learn an effective strategy quickly. Figure 8 draws
the relationship between the win rate and the episode. This
shows that the win rate ofthe blue team is increased while the
red team win rate is decreased. This means that the blue team
has learned good strategy to against the red team. On the
other hand, although the reward is converged in the initial
stage, the red team is still suppressed by the blue team and
cannot learn corresponding countermeasures, The red team
only maintains a relatively low value of the win rate. The
reward and the win rate for both the red and blue teams are
relatively stable where the value of the episode larger than
3000, illustrating that the non-cooperative game has entered
an approximate equilibrium.

llladdpg vs naddpg
total reward

f th MADDPG b d d ITbllTbha e e hvueruarameters 0 e - ase mo e

Hyperparameters Values

Red number 5

Bluenmnber 5

Learning rate Acto:r=O.OI, Critic=O.OOI

Optimizer Adam

discount factor 0.95

soft update factor 0.99

Replay Buffer size lOOw

Number ofhidden layers 2

Number ofunits 128

Batch size 512

Save step 500

Max step 100

Max episode 6k

Soft update step 200

To investigate the performance of the MADDPG-based
VAV swarm confrontation model, we draws the relationship
between the mean reward and the episode, where red and
blue UAVs all use MADDPG algorithm (Figure 5). Here, the
mean reward is the average value of the total reward of red
and blue teams. One can see that the mean reward increases
as the increment ofthe episode and approaches to zero when
the value of the episode is large, which implies that UAV s
can be effectively trained. Consequently, by utilizing the
information of other VAVs, VAV can make effective
decisions under the MADDPG-based UAV swarm
confrontation model.

!
" - 3D

-,"

WOO 2000 3000 4000 5000 SOOO
episode

Fig. 5: The mean reward of two teams as a function of the
episode under the :MADDPG-based Model, where red and blue

DAVs all use :MADDPG algorithm

~

10000~

!
§ 20000
I

30000

40000

The win rate is an important indicator for VAV swarm
confrontation. To further investigate the performance of the
MADDPG-based Model, we plot the relationship between
the win rate and the episode in Figure 6. It shows that, with
the increase of the number of episode, the win rate value

2000 4000 6000 8000 10000
episode

Fig. 7: The mean reward of two teams as a function of the episode
under the MASAC-based Model, where red and blue DAVs all use

MASAC algorithm

5000
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5 Conclusions

Fig. 8: The win rate as a function of the episode "With respect to red
and blue DAVs under the MASAC-based Model

In the further work, we will study more effective
MADRL-based models to improve the win rate of UAV
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Obviously, for the MADDPG-based model, the blue UAV
team cannot effectively maintain its high win rate in the
initial stage, and is suppressed by the red UAV team in the
later stage. However, in the case of the MASAC-based
model, the blue team can learn a number of effective
strategies quickly in the initial stage, and will maintain a high
value ofthe win rate. Consequently, the game equilibrium of
the blue team under the MASAC-based model is betler than
that of the MADDPG-based model.

To summarize, we have introduced the multi-agent deep
reinforcement learning (MADRL) paradigm into the
confrontation scene of Unmanned Aerial Vehicle (UAV)
swarm. Based on the multi-agent deep deterministic policy
gradient (MADDPG) algorithm and the multi-agent soft
actor-critic (MASAC) algorithm, we construct two UAV
swarm non-cooperative game models: the :MADDPG-based
model and the MASAC-based model. We construct an UAV
swarm adversarial environment, in which 5 red VAVs
combat with 5 blue UAVs. The results indicate that all two
MADRL-based game models converge to the equilibrium,
and the performance of the MASAC-based model is better
than that of the MADDPG-based model.
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